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We consider periodically driven noisy systems in the limit of long times. To deduce their asymptotic
time-periodic probability distributions, two approaches are commonly used: adiabatic theory, valid if driving is
very slow, and linear-response theory, applicable when driving is weak. We introduce an approximation scheme
that combines these two approaches to yield the driven probability distribution even when driving is strong and
moderately fast, so that both linear-response and adiabatic approximations break down. The high accuracy of
this scheme is demonstrated on a driven overdamped noisy oscillator in a bistable quartic potential.
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In many natural and experimental situations, the system
of interest experiences a combined action of a time-periodic
deterministic driving and noise. The former may be imposed
by an experimentalist or some other external agent, while the
latter results from a huge number of uncontrolled micro-
scopic degrees of freedom coupled to the system. Specific
examples can be found in areas as diverse as ion transport in
molecular pumps �1�, atomic friction �2,3�, dielectric re-
sponse �4,5�, climatology �6,7�, etc. Furthermore, in contrast
to the deterministic case, noise can change the response and
transport properties of a system, sometimes introducing sur-
prising new effects, such as stochastic resonance �8�, the
ratchet effect �9�, synchronization �10�, and absolute nega-
tive mobility �11�. For these reasons, the subject of periodi-
cally driven noisy systems constitutes an important part of
nonequilibrium statistical physics dealt with in an increasing
number of articles �3,5–7,10–21,21–27� and review papers
�8,9,28,29�.

The evolution of the probability density W�x , t� to find the
system in the state x �in general, a vector� at time t is gov-
erned by the Fokker-Planck equation �FPE� �30�

�W�x,t�/�t = L̂0�x�W�x,t� + a�t�L̂1�x�W�x,t� , �1�

where the operator L̂0 describes the undriven system and L̂1
the effect of the time-periodic driving field a�t� with ampli-
tude a0 and frequency �. In the following, we will focus on
the systems, whose probability distribution in the long-time
limit is a periodic function of time, oscillating with the fre-
quency of external forcing,

W�x,t + 2�/�� = W�x,t� . �2�

Determination of this asymptotic distribution is the principal
task of this work.

In general, an exact treatment of this problem is possible
only in a rather limited number of special cases �13–16�.
Therefore, various analytic approximations have been intro-
duced, which make use of the smallness of some parameter,

such as driving amplitude �5,17–20,29�, frequency
�12,21–23�, period �24,25�, or noise level �3,26,27�. In con-
trast, our goal is to develop an approximation that is valid in
the challenging regime where no small parameter is present.

Although the approximation scheme described below is
rather general and applies to a variety of systems, we will
focus here on one paradigmatic example, namely a driven
overdamped noisy oscillator, which finds itself in a confining
nonlinear time-dependent potential U�x�−a�t�x. The dynam-
ics of the system’s coordinate x is governed by the Langevin
equation �x /�t=−U��x�+a�t�+�2T��t�, where ��t� is unbi-
ased Gaussian white noise of unit strength and T is the tem-
perature. The dynamics of the coordinate probability distri-
bution W�x , t� is described by the Fokker-Planck equation �1�
with the operators given by �30�

L̂0�x�W�x,t� =
�

�x
�T

�W

�x
+ U��x�W� ,

L̂1�x�W�x,t� = −
�W

�x
. �3�

Within the adiabatic approximation, the driven probability
distribution at each moment of time is completely deter-
mined by the instantaneous force value a�t�,

WA�x,t� =
exp�− �U�x� − a�t�x�/T	



−�

�

dx� exp�− �U�x�� − a�t�x��/T	
. �4�

This expression is valid only if driving is adiabatically slow,
so that the system is always in the accompanying equilibrium
with the instantaneous driving. At the same time, the driving
amplitude a0 can be arbitrarily large.

Linear-response theory, on the other hand, applies to the
case of very small driving amplitude, a0, without any restric-
tions on driving frequency. The linear-response approxima-
tion for the driven probability distribution is written as the
first-order polynomial in a0,*Email address: mykhaylo@physik.uni-bielefeld.de
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WL�x,t� = Weq�x��1 + a0w�x,t�� ,

Weq�x� =
exp�− U�x�/T�



−�

�

dx� exp�− U�x��/T�
. �5�

Furthermore, normalization of WL�x , t� to 1 implies that the
linear-response correction w�x , t� has the property

�w�x,t��eq 
 

−�

�

dxWeq�x�w�x,t� = 0. �6�

Although the adiabatic limit �4� of the driven probability
distribution depends exponentially strongly on the amplitude
of driving, the argument of the exponentials in the numerator
and denominator is only a linear function of a0. This means
that if one writes the driven probability density in the form
W�x , t�=ef�x,t� /�dx�ef�x�,t� and approximates the unknown
function f�x , t� linearly in a0, so as to reproduce the linear-
response result �5� correctly, then this approximation be-
comes exact in the limit of adiabatically slow driving. Fur-
thermore, this approximation may be expected to work
reasonably well even at finite driving frequencies, because it
takes into account the effect of retardation between the driv-
ing and the system, as the linear-response formula �5� does.
With this in mind, we arrive at the following lineabatic ap-
proximation �LA� for the driven probability density:

WLA�x,t� =
exp�− U�x�/T + a0w�x,t��



−�

�

dx� exp�− U�x��/T + a0w�x�,t��
. �7�

This expression is the main conceptual step of the present
work.

The remaining practical task is to determine the linear-
response correction w�x , t� for the system described by Eqs.
�1� and �3�. For definiteness, we assume the driving to be
harmonic,

a�t� = a0 cos��t� . �8�

Upon substitution of the linear-response ansatz �5� into the
FPE �1� and neglecting the terms O�a0

2�, we get

�w�x,t�/�t = L̂0
†w�x,t� + cos��t��Weq�x��−1L̂1Weq�x� , �9�

where the adjoint �or backward� Fokker-Planck operator is
defined by �cf. Eq. �3��

L̂0
†f�x� = Tf��x� − U��x�f��x� . �10�

Next, we Fourier-decompose w�x , t� as

w�x,t� =
1

2
�w̃�x,��ei�t + w̃*�x,��e−i�t� �11�

with the complex-valued function w̃�x ,�� satisfying the
equation

i�w̃�x,�� = L̂0
†w̃�x,�� + �Weq�x��−1L̂1Weq�x� . �12�

The solution of Eq. �12� is sought as a power series of i�,

w̃�x,�� = �
n=0

�

�i��ngn�x� �13�

with the expansion coefficients gn�x� satisfying the recursive
hierarchy of equations for n=0,1 ,2 , . . .,

L̂0
†gn = gn−1, g−1�x� ª − �Weq�−1L̂1Weq�x� . �14�

For the operator �10�, each term of this hierarchy can be
found in quadratures,

gn�x� =
1

T



0

x

dy

−�

y

dze�U�y�−U�z��/Tgn−1�z� + gn�0� , �15�

where the integration constant gn�0� is determined from the
condition

�gn�x��eq = 0, �16�

which follows from Eq. �6�.
For practical evaluation of the function w̃�x ,��, one

needs to truncate the power series �13� at some value of the
summation index n. Direct use of the expansion �13� requires
a very large number of terms for convergence. To accelerate
the convergence, we note the following.

Equation �12� has a formal solution w̃�x ,��
= �i�− L̂0

†�−1Weq
−1L̂1Weq�x�, which decays as 1/� at high fre-

quencies. This observation suggests that instead of the power
series �13�, it is more advantageous to use an �N / �N+1��
Padé approximation, i.e., a rational function of i�,

w̃Padé�x,�� =
�n=0

N
pn�x��i��n

1 + �m=1

N+1
pN+m�x��i��m

, �17�

where the 2N+1 coefficients pn�x� are found from the re-
quirement that the Taylor expansion in i� of the approxima-
tion �17� had the same 2N+1 first terms as the power series
�13�. Our detailed investigation has indicated that even with
N=0, Eq. �17� is a fair approximation to w̃�x ,��, while the
convergence of the Padé approximation �17� is already
achieved at a relatively small value of N=2. We note that a
similar method based on the Padé expansion has been intro-
duced some time ago �31,32� to study relaxation processes in
the absence of driving. Having determined the function
w̃�x ,��, the linear-response correction to the driven prob-
ability density �11� and the lineabatic driven distribution �7�
follow readily.

A criterion of validity of the lineabatic ansatz can be es-
tablished by considering the second-order correction to the
driven probability density, presented as

W�x,t� = Weq�x��1 + a0w�x,t� + a0
2u�x,t�� + O�a0

3� . �18�

In the spirit of the previous discussion, we modify the adia-
batic formula �4� so as to correctly reproduce the first two
orders of the expansion �18�, leading, up to a normalization
constant, to the second-order lineabatic approximation
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WLA2�x,t� � exp„− U�x�/T + a0w�x,t� + a0
2�u�x,t�

− �w2�x,t� − �w2�x,t��eq�/2	… . �19�

Its comparison with the lineabatic ansatz �7� shows that the
latter is a good approximation, provided that

�w�x,t�� � a0�u�x,t� − �w2�x,t� − �w2�x,t��eq�/2� . �20�

This is to be compared with the condition of validity of the
linear-response formula �5�, namely

�w�x,t�� � a0�u�x,t�� , �21�

which follows from Eqs. �5� and �18�.
It can be shown that at sufficiently high frequencies, the

right-hand sides of both inequalities �20� and �21� decay as
1/�2, while the left-hand side drops only as 1/�. Therefore,
both the linear-response formula �5� and the lineabatic ap-
proximation �7� are expected to work well at high frequen-
cies, even for high driving amplitudes.

At low �, on the other hand, the situation is drastically
different. In this case, the higher-order terms neglected in the
linear approximation �5� are actually not at all small even for
a small but finite amplitude a0, because the function w�x , t�
can take on such values that the expression in the brackets of
Eq. �5� becomes negative; then, the higher-order corrections
must be of similar magnitude in order for the probability
density W�x , t� to remain positive at all values of x. There-
fore, the criterion �21� of validity of linear response theory
breaks down at low frequencies. In contrast, the expression
on the right-hand side of the inequality �20� goes to zero as
�→0, and the lineabatic formula �7� reduces to the adiabatic
one �4�. Moreover, for a harmonic potential U�x�, the right-
hand side of the criterion �20� is identically zero at all fre-
quencies, and the lineabatic approximation �7� is exact and
coincides with the result of Ref. �13�. For other potentials,
the criterion �20� is satisfied for those values of � that are
smaller than the smallest characteristic frequency of the sys-
tem. Since the condition �20� of validity of the lineabatic
approximation �7� holds at low and high �, one can expect
that this approximation scheme will also work well at inter-
mediate driving frequencies.

To demonstrate its accuracy in comparison with linear-
response theory �5� and adiabatic theory �4�, we apply these
three approaches to the oscillator �1�, �3�, and �8� in a
bistable potential,

U�x� = −
x2

2
+

x4

4
. �22�

In addition to these three analytic approximations, we have
solved the Fokker-Planck equation �1� numerically. Our main
interest is the behavior of the average coordinate �x�t��

�dxxW�x , t�, a quantity of interest in many contexts from
atomic friction to stochastic resonance �2–8�; it is plotted
versus instantaneous forcing �8� as hysteresis loops in Fig. 1.

These results are obtained for a relatively strong driving
of the amplitude a0=0.5; for comparison, the potential
U�x�−ax becomes monostable at external bias a=2/�27
�0.385. The slowest time scale characterizing the system in
the potential �22� is the rate of thermally activated interwell

hopping in the absence of driving. This quantity is given by
Kramers’ formula �33�,

�Kr =
��Umin� Umax� �

2�
exp�− 	U/T� , �23�

where Umin,max� refer to the second derivatives of the potential
�22� at its extrema xmin= ±1, xmax=0, and 	U=1/4 is the
height of the barrier separating the two minima. The calcu-
lations were performed for the temperature value T=0.1, at
which Kramers’ rate is �Kr�0.02.

It is seen from Fig. 1�a� that at a small frequency
�=0.001
�Kr, the linear-response theory yields the correct
width of the hysteresis loop, but severely overestimates the
amplitude of the driven oscillations of the average coordi-
nate, while the hysteresis trace obtained from the lineabatic
approximation is practically indistinguishable from the one
obtained numerically �see the inset in Fig. 1�a��.

At driving frequency of the order of Kramers’ rate,
�=0.01��Kr, the system cannot follow the relatively fast
temporal variations of external forcing as effectively, leading
to a retardation between the driven value of the average co-
ordinate and external forcing and, consequently, to a broad-
ening of the hysteresis loop. This effect is correctly repro-
duced by both the linear-response theory and lineabatic
approximation, Fig. 1�b�, although, again, the former overes-
timates the amplitude of driven vibrations by a factor of 4.
The true width of the hysteresis loop is somewhat smaller
than that predicted by both linear-response theory and our
lineabatic approximation. The reason for this is as follows.
The time scale necessary for the system to come into equi-
librium with the instantaneous external forcing a�t� changes
periodically in time together with this forcing: the larger the
value of external bias a, the faster the system comes to equi-

FIG. 1. Hysteresis loops depicting the relation between the av-
erage coordinate �x�t�� of the driven system �1� and �3� in the po-
tential �22� and the driving �8� in the long-time limit. The tempera-
ture is T=0.1, driving amplitude a0=0.5, and driving frequencies �
are 10−3 �a�, 10−2 �b�, 0.1 �c�, and 1 �d�. Solid lines: numerical
solution of the Fokker-Planck equation �1�. Dotted lines: linear-
response approximation �5�. Dashed lines: lineabatic approximation
�7� and �17� with N=2. Since the adiabatic approximation �4� is the
same for all frequencies, it is depicted as a dashed-dotted line only
in �b�.
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librium with it. Therefore, the retardation between driving
and the system’s average coordinate at large values of a�t� is
actually smaller than that predicted by the linear-response
theory �5�, and consequently the true width of the hysteresis
loop is also smaller.

At still larger driving frequencies, the hysteresis loop be-
comes more rounded, see Fig. 1�c�, and degenerates into an
ellipse, Fig. 1�d�, at � of the order of the intrawell frequen-
cies.

In conclusion, we would like to note that the systematic
improvement of the accuracy of lineabatic approximation �7�
evidently should proceed by incorporating the higher-order

terms of the expansion �18� in a way similar to Eq. �19�.
However, our additional analysis based on numerical evalu-
ation of the function u�x , t� has revealed that Eq. �19� is not
more accurate than the lineabatic expression �7� outside of its
range of validity specified by the inequality �20�. The non-
trivial task of finding better alternatives to Eq. �19� is the
subject of our current research.
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